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In the investigation and solution of flows of compressible and incom- 

pressible fluids, there may be great value in a preliminary examination 

of the extremal properties of the solutions of the differential equa- 

tions of the given problem, with or without the boundary conditions. In 

this way, many important facts can be obtained, for instance, theorems 

concerning the attainment of extremal values for perturbations of steady 

potential flows directly on the boundaries of the bodies. On the other. 

hand. knowing the extremal properties of the solution, it is possible, 

in a number of cases, to develop simple, rapidly converging, computa- 

tional methods. 

In many cases, the investigation of the extremal properties of the 

solution can be accomplished by proceeding directly from the properties 

of the differential equations. 

In the following, we derive a theorem concerning the extremal proper- 

ties of a given class of equations of second order, and demonstrate its 

application to gas dynamics. 

Theorem. If the differential operator 

is such that its application to any twice continuously-differentiable 

function f(z, y) at its point of maximum, N,, and in some neighborhood 
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of that point gives a non-positive value, and @a (N,) ’ 0. or 

@ 
“YY 

(No) > 0, then the solution U(X, y) of the eiiation L(U) = 0 cannot 

have a maximum value at that point or in a certain neighborhood of it. 

We require that the function 0 be continuous and continuously differ- 

entiable with respect to U, uz and uxx or to “, ” 
Y 

and “YY in some 

region of variation of its arguments. 

In that case, if application of the operator to a twice continuously 

differentiable function at its point of minimum gives a non-negative 

value, and the preceding requirements are satisfied, then the conclusion 

of the theorem is that the solution of the equation L(u) = 0 cannot 

attain a minimum. 

Proof. Assume that the solution U(X, y) of the equation L(u) = 0 

attains a maximum at some point Ne(xo, Y,,), at which the conditions of 

the theorem are satisfied. Choose a neighborhood G of the point N, such 

that inside it the stated requirements are also fulfilled. and introduce 

the function 

a* (2, y) = u (x, y) + k (x - ~0)~ (k > 0) 

which, for sufficiently small k, will also reach a maximum at some point 

Nl( x1, yl) of the chosen neighborhood. It is sufficient to take 

k< IMI-lml 
62 

where M = “(No), ITI = sup u(N) on the boundary r of the region C around 

the point N,, and 6 is the diameter of region G. 

Applying the operator L to the function u* at the point N, should, 

according to the conditions, give a non-negative value 

L [“* (N,)l < 0 

On the other hand 

L [u* (A’31 = Q, (a, ~1, u1 + k (a--- zd2, ur, + 2k (21 - 201, y,,t uw,, uyvI, urr + 24 

In view of the conditions of the theorem, we can apply Lagrange’s 

theorem of the mean to the right-hand side (taking 0” (N,) > 0 and @ 

). to be continuously differentiable with respect to “,-tz and uxx 

The result is 

L I”* (N,)l = @ (Zl, Yl, Ulr %,, yJ,' Q,,r y/y,* %_r, I+ 

+ 0, (11, yl, ~1 +ek (21 - 20)'. u.,., + 2ek (~1 - 501, u,,,, uxtl,r uyv,v %_r, + 2Ok) x 
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x k (21 - ZOY + 
+ @ux (XI, ~11, ~1 + ok (~1 -x0)*, ux, + 2ek (xl- 201, uv,, urn,, Q,,, uxt, + 2W x 

x 2K (21 - ~0) + 
+ auxx (a YI, ~1 + Ok (~1 - zo)*, ux, + 2Wc (21 - 4, uar,, uwl, uw,, urr, + 2Ok) 2k 

(0 <e < 1) 

The first term of the right-hand side is equal to zero, since u(x,y) 

is the solution of the equation L(U) = 0(x, y, a, ax, uy, uxy, uyy, uXr) = 0. 
The next two terms are smaller to a higher order than the last one. 
Shrinking the region G to the point No, ~1 - x,,, yl - ye. In view of the 
theorem, a),, > 0 at the point N, and the whole expression becomes posi- 

tive. The rzgulting contradiction proves the theorem. 

Instead of the function u+(x, y) = U(X, y) + k(x - X~)~, we may take 
the function u**(s, y) = U(X, y) + k(y - y,,)?, which may solve the prob- 
lem if it is difficult or impossible to determine the sign of ou (No). 

Here, it will be necessary to require that @ be continuously diflcfzr- 
entiable with respect to U, u 

Y 
and u 

YY’ 

The second part of the theorem, concerning the minimum, can be proved 

by introducing the function 

u*** = u (x, y) - k (c - zo)* 

Let us apply the results obtained to equations of motion of a gas 

(cf.. for example, [d). The requirements of the theorem are satisfied, 
for example, by the equations for the velocity potential, go, for plane, 
axisymmetric, and three-dimensional flows of a gas, which have, respec- 
tively, the forms 

P (~1 = I@ + 1) bea - ‘px’) - (k - 1) ~$1 TJ~ + 

+ I@ + i) (a*’ - (~,e) - (k - i) ‘pxel v’,,,, - 4q#7~, = 0 

6% Y - Cartesian coordinates) 

Q (v) = [@ + 1) ha - cp,“, - (k - 1) vr21 ‘pxx + 

+ [(k + 1) (a** - (P:) - (k - 1) vs21 f&r - 4cp,cp,cp,,. + 

-!- [(k f i) a,’ - (k - 1) (cp? +(~,3] T = 0 

(? z- cylindrical coordinates) 

R (cp)= [(k +I) @*a - oXa) - (k - i) (‘py” % @)I ‘put + 
+ I& + 1) (a,’ - cp,“) - (k - 1) (‘pz2 + cp,“)l ‘pm + 
+ [(k + 1) be8 - $1 - (k - 1) (‘pr* + cp$l ‘pzz - 

- 4’pr’p11’pxy - 4Vy(P&r - 4t&(px(Puc = 0 

(x, y, z- Cartesian coordinates) 

(1) 

(2) 

(3) 
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Here, a* is the critical speed and k the adiabatic index. 

For the cases enumerated. the role of a twice continuously differ- 

entiable function f(~, Y) is played by the solution of the equation it- 

self, namely the velocity potential. It follows that their solutions do 
not attain maxima and minima in the flow field. 

For plane flows of a gas, this result was obtained in a different way 

by Chaplygin [21. This conclusion turns out to be valid also for the 

stream functions of plane and axisymmetric flows. For example, the 

stream function v for an axisymmetric section satisfies the equation 

Here, p and p,, are densities, a is the speed of sound and 10 the mag- 

nitude of the velocity 

a2 = $ [(k + 1) ae2 - (k - 1) w2 

w2 = ‘pr2 + cp:, -- 2p= ‘#x2+‘bu,a 

ra 

and the connection between the stream function and the velocity potential 

is given by the relations 

Using these relations, the equation for the stream function can be 

put in the form 

Here, fl. f2 and f3 are known functions, which become zero for yy, = 

lyY 
= 0. 

The applicability of the given theorem to the stream function follows 

immediately from this relation. 
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